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application to the determination of moments of spectral 
density distributions 

L Lain and A Torre 
Depammento Quimica Fisica, Facultad de Ciencias, Apdo. 644, e-48080 Bilbao, Spain 

Received 6 March 1995 

Abstract. Explicit formulae for the calculation of mces of N-order replacement operators in 
finite-dimensional. antisymmetric and spin-adapted N-electron Hilben spaces are derived. These 
formulae are useful in the calculation of traces of Hamiltonian powers and provide an easier 
determination of moments of spectral density distributions according to the general procedure 
reported recently. 

1. Introduction 

Traces of products of pth-order replacement operators (p-Ro) calculatedin N-electron spin- 
adapted model spaces ( p  ,< N) are of importance in several areas of physics. These 
traces have been used in atomic spectroscopy to express moments of spectral density 
distributions which provide knowledge of the distribution function and consequently allow 
us to carry out simulations of spectra (Brody et al 1981, Bauche and Bauche-Amoult 1990, 
Kanvowski 1994). The propagation coefficients in the statistical theory of nuclear spectra 
are also calculated using similar types of traces (Brody etal 1981, Nomura 1988). Some 
computational approaches to many-electron theory (Diercksen et al 1990, Valdemoro et nl 
1992) have required an optimized evaluation of these expressions. 

In a work by Torre et el (1993) the calculation of spin-adapted traces of p-Ros (that is 
the traces over the N-electron eigenfunctions of the 3’ and iz operators with determined 
quantum numbers S and S,) has been carried out through a difference of $-adapted traces 
(that is the traces over the N-electron eigenfunctions of the .fz operator). This means that, 
in practice, the calculation of the spin-adapted traces is performed over Slater determinants. 
Using this procedure and expressing the N-electron Hamiltonian through the Nth-order 
spin-free replacement operators (N-Ros), general formulae have been found to evaluate 
the spin-adapted traces of any arbitrary power n of the Hamiltonian as a function of the 
&-adapted traces of the N-ROS (Torre and Lain 1995). In that reference, a technique 
to determine the S,-adapted traces of the N-Ros has been described; this simplifies the 
calculation of the moments of the spectral density distributions of a set of Hamiltonian 
eigenvalues (Karwowski and Bancewicz 1987, Rajadell et al 1993). 

This paper goes beyond showing the derivation of a general formula which calculates 
the &-adapted traces of any N-RO as a function of simple parameters which characterize 
the N-RO. Since these parameters can be determined systematically, our formulae provide 
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the means to construct a simple and general program for the calculation of the moments of 
spectral density distributions; only the standard integrals, the number of electrons N and 
the spin S are needed as data. 

In section two we summarize the notation, main concepts and references. Section three 
describes the final formula for the calculation of  &-adapted traces of N-ROS. Finally, the 
appendix shows some practical examples corresponding to the structure of the N-ROS. 

L Lain and A Torre 

2. The S,-adapted traces of N-order replacement operators 

Let us consider the N-electron Hamiltonian fi which is represented in a finite-dimensional 
antisymmetric and spin-adapted Hilbert space. This model space is spanned by the N- 
electron antisymmetrized and spin-adapted products of  orthonormal spin-orbitals and is 
known as the full configuration interaction (FCI) space. Choosing the origin of the energy 
scale so that E = 0 (the first moment), the nth-order moment M.(H) of the Hamiltonian 
eigenvalue spectrum in that space is defined as 

Tr(k") (1) 
1 

D(N, S, K )  
M.(ri) = 

where D(N, S, K) is the Weyl-Paldus formula f,€'aldus 1974) defined as 

K f l  

that is, the dimension of the FCI space for N electrons, a spin S, any possible fixed value 
of the quantum number S, and K one-electron orbital functions of an orthonormal basis set 
(Paldus 1976). 

In the N-electron space, the spin-free N-electron Hamiltonian fi can be expressed in 
the form (Torre et a1 1991) 

where 

S;;:;;: are the product of the Kronecker deltas 

(5) il ..& - 
h-b 6 . - a i ,  j ,  . . . &,j, 

zH;F are the generalized two-electron integrals (Valdemoro 1992) 

(6) 
1 

N - 1  ( W i j  + s i j C k / )  
Z H j k  = (i j lkl)  + - 

and (i j lkl)  and eij are the standard two-electron (in the Mulliken convention) and one- 
electron integrals respectively. 

are the Nth-order spin-free replacement operators (N-ROS) (Kutzelnigg 1985, 
Paldus and Jeziorski 1988) 

N E { ]  ... i x  
h... 1" 
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where bza and bj,, are the usual creation and annihilation fermion operators respectively, 
UI, ..., UN are the spin coordinates and i l ,  . . . , i ~ ,  j , ,  . . . , j~ . . . are the K one-electron 
orbital functions of the orthonormal basis set. 

If A ,  S2, . . . are the N-electron functions and eigenfunctions of the operators k2 and k, 
corresponding to the spin quantum numbers S and S, that can be constructed with K orbital 
functions, then the spin-adapted trace of the nth power of the Hamiltonian operator is given 
by (Torre and Lain 1995) 

where the shorthand notation Cell C(if,.,.,i,) etc has been used. PI (if . . . ii) is a 
permutation of'the set ( if . .  . L i ) ,  belonging to the symmetric group SN and Pn-, ( j ;  . . . j : )  
is the same concept referred to the indices ( j ;  . . . j:). 

In this way, the traces of the operator k are calculated using the, expressions 
(A ,NE' L . . . h  IA)N,s,K, which are the spin-adapted traces of,the N-ROS These 

traces vanish unless the sets (il . . . i ~ )  and ( j ,  . . . j N )  are composed by identical orbital 
functions and, for a given spin S, their numerical values are independent of the quantum 
number S, (Lainetal 1988). An optimized calculation of CA(AINE;:::::lA}~,~,~ is carried 
out using the formula (Torre er a1 1993) 

jl... h 

where S'D(S) denotes the N-electron Slater determinants that can be constructed with a 
basis set of K orbital functions, having the biggest eigenvalue S, = S of the iZ operator 
for a determined spin quantum number S, that is, having Ne = iN + S a-electrons and 
Np = $N - S 8-electrons. This means that the spin-adapted trace of the N-ROs can be 
evaluated through a difference of &-adapted traces of those operators. 

According to the above equations, the use of N-ROS provides explicit and general 
formulae to evaluate the trace of any power of the Hamiltonian (equation (8)) and the nth- 
order moment of a Hamiltonian eigenvalue distribution (equation (1)) which is worthy of 
statistical studies. The N-electron matrix elements which are involved in equation (8) are 
calculated using a function corresponding to formula (4) so that only the two-electron mahix 
must be stored in computing programs. The calculation requires the determination of spin- 
adapted traces of N-Ros which is carried out in terms of the &-adapted ones (equation (9)). 
Although a technique to evaluate these traces has been described (Torre and Lain 1995), in 
the next section explicit formulae for the calculation of $-adapted traces of an N-RO for 
any value of the S, quantum number are derived. These formulae provide a straightforward 
calculation of the traces of Hamiltonian powers and moments through algorithms which can 
easily be programmed. 
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3. The explicit calculation of S,-adapted traces of N-ROS 

The aim of this section is the derivation of a mathematical formula which can be used in 
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computer evaluations of &-adapted traces of N-ROS, that is, in the calculation of 

(sD(s)lNE;;;::; ISD(S)) (10) 
SDW 

where it is assumed that the sets (il . . . iN) and ( j ,  . . . jN) are composed by identical orbitals 
(otherwise the value of the trace is zero). 

The Slater determinants S’D(S) in the sum CsDcs, are composed by N,  = $x + S 
a-spin orbitals and Ng = 4N - S p-spin orbitals. Hence, the problem we need to solve is 
the calculation of the number of terms derived from the expansion of the N-RO (given in 
equation (7)). which have the same spin-orbitals in the creation operators, the annihilation 
operators, and the Slater determinants of the sum CsDcn. The number of these types of 
terms depends on the structure of the N-RO; each of the terms contribute to the trace (10) 
as (-I)”, where U is the number of transpositions required to pass from the ordered set 
( i l  . . . i ~ )  to the set (jl . . . jN). 

According to equation (7), the indices occupying the same position in the creation and 
annihilation sets of the N-RO have the same spin-coordinate. Identical indices occupying 
the same position in the sets {i)  and { j )  will be called diagonal indices: they constitute the 
diagonal part of the N-RO. Similarly, in the N-RO it is possible to distinguish one or more 
blocks constituted by subsets of creation indices (ik . . . il) and annihilation indices (j, . . . j,) 
containing identical orbitals (although in different positions) so that all the elements in a 
block must have, in the expansion of the N-RO, the same spin-coordinate (a or p). Blocks 
and diagonal indices allow us to represent the N-ROS through graphs of the type 

... x . . x  ... I I I... 
where the lines join identical indices. 

When there is no repetition of indices in the creation set (or in the annihilation set), the 
N-RO is represented by only one graph. The repetition of indices in the sets ( i )  and [ j )  
produces different possibilities of how to divide the N-RO into blocks of indices with the 
same spin. Each of these possibilities corresponds to some terms of the N-RO expansion and 
will be represented by a graph. Since the indices of the N-RO refer to fermion operators, 
each index in the creation (or annihilation) set can be repeated only once. Consequently, an 
N-RO with q non-diagonal repeated indices will have 24 different graphs due to there being 
24 ways to relate q pairs of creation indices to q pairs of annihilation indices. However, 
the graphs with repeated indices in the same block must be ignored because of the Pauli 
principle. In the same sense, it is possible to have graphs with repetition of indices between 
different blocks, between a block and the diagonal indices and between diagonal indices 
themselves, but repeated indices cannot belong to the same block. In order to clarify 
these aspects we will consider, as an example, the 6-RO 6Ejti;;:, where 1,2,3. .  . indicate 
different orbital functions. This RO has the graphs 

1 2  1 3 2 3 
0 0 . 0 . . 
. 0 0 0 0 . 
2 1  3 1 2 3 
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and 

1 2  1 3 2 3 
0 0 . 0 0 0 
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. 0 0 0 

2 1  3 1 2 3 

where, obviously, the last one must be neglected due to it having two identical indices in 
the same block. 

Referring to a determined graph in what follows, the blocks, the diagonal indices and 
the relationships among them will be characterized by several parameters which we will 
define as follows: 

bi, the number of creation (or annihilation) indices in the block i ;  
rid, the number of common indices between the block i and the diagonal part of the 

rd. the number of repeated indices in the diagonal part of the N-RO; 
xi = 1, when the spin-coordinate of the block i is p ;  
xi = 0, when the spin-coordinate of the block i is a; 
ct = 1, for the blocks i and j when i n j # 0 and cj = 0 otherwise; 
m.  the number of blocks in the graph; 
U, the number of transpositions required to pass from the ordered set (it . . . i ~ )  to the 

set ( j l  . . . j N ) .  
The terms in the expansion of the N-RO that contain the same spin-orbitals as the Slater 

determinants of the sum will be obtained by appropriate assignations of a- and 
@-spin to the different blocks and diagonal indices of each graph. The number of indices 
which have no restriction on their distribution in the a or f i  part of the terms of the N-RO 
expansion is 

(11) 

N-RO; 

N - x ( b i  +rid) - 2rd 

and the number of indices that have a determined spin (a! or j?) assigned is 

where the factors xi and (1 - xi )  exclude the contribution when a block and a diagonal 
index which also appear in that block have the same spin-coordinate. 

Consequently, the number of places in the f i  part of the terms of the N-RO expansion 
to be occupied by the indices given by expression (1 1) is 

% N  - S - x [ x ; b j  + (1 -xi)&] - rd. (13) 

A similar expression can be obtained for the a part: i N  + S - Ci[x ib i  + (1 -xi)ridl- rd. 
Hence, the number of possibilities for distributing the indices expressed by formula (11) 
over the available places (expression (13)), without violating the Pauli principle, is described 
by the binomial coefficient 



3368 L Lain and A Torre 

The sum for all the possible values of the parameters xi calculates the contribution of 
a graph to the value of the trace given by formula (lo), that is 

where the factors ni<,(l - 8:;$) have been included to avoid binomial coefficients 
containing blocks with common indices and the same spin. The factor ZP" arises from 
the two possible spin-coordinates (a or p )  which can be assigned to the rd repeated indices 
in the diagonal part. 

In conclusion, the possible graphs for an N-RO and their corresponding parameters 
bi, cj, rid, rd. U, m can be easily calculated using a simple computer program. The use of 
formulae (15) and (9) leads to a straightforward evaluation of the spin-adapted traces of 
the N-RO which depend on the number of electrons N, the spin S and the structure of 
the operator. These tools provide a suitable calculation of traces of Hamiltonian powers 
and moments of spectral density distributions which can be carried out by a computer 
program that only needs the parameters N, S and the integrals corresponding to the K 
orbital functions of the basis set. 

Some examples of the calculation of &-adapted traces of N-ROS corresponding to their 
structure are given in the appendix. 
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Appendix. Examples 

(i) Let us consider as a first example the calculation of &-adapted traces of the operator 
s E ~ ~ ~ ~ ~ ~ .  This operator has q = 2 non-diagonal repeated indices, so that it has Z2 = 4 
graphs which can be described as 

(a) block 1 i j  = j ,  = liz = j ,  = 2; block 2 is = j 4  = 2i4 = j ,  = 3 ;  block 3 
is = j6 = 1 i6 = j s  = 4; diagonal indices i7 = j7 = 3 and is = j8 = 4. 

(b) block 1 il = j s  = li:! = j ,  = 2is = j2  = li6 = j s  = 4; block 2 
i, =~ j4  = 2i4 = j ,  = 3 ;  diagonal indices i7 = j7 = 3 and is = j8 = 4. 

(c) block 1 il = j2  = li2 =~ j 4  = 2i3 = j c  = 2i4 = j ,  = 3; block 2 
is = j6 = li6 = j s  = 4; diagonal indices i7 = j7 = 3 and ie = j 8  = 4. 

(d) block 1 i~ = j6 = l i z  = j 4  = 2i3 = j ,  = 2i4 = j3 = 3is = j2  = li6 = j s  = 4; 
diagonal indices i7 = j ,  = 3 and is = j s  = 4. 

Starting with graph (a), that is 

1 2  2 3 1 4 3 4  . 0 0 . 0 . 0 . 
. 0 . . . . . . 
2 1  3 2 4 1 3 4  
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its corresponding parameters are m = 3, bl = 2, bl =~ 2, b3 = 2, ci = 1, cl = 1, ci = 
0, rld = 0, TZd = 1, r3d = 1, rd = 0, v = 3. The application of formula (15) for the case 
of S, = 0, that is, when $ N  - S = 4, lcads to the value -2. The conhibutions of graphs 
(b), (c) and (d) are zero due to the fact that they all have repetition of indices in a block. 
Hence, for the operator *E$F&f;j, the value of trace (10) for S, = 0 is -2 

(ii) As a second example we consider the operator sEi;j::. Again, the number of 
non-diagonal repeated indices is two so that it has four graphs which are defined by 

(a) block 1 il = j z  = liz = j l  = 2; block 2 i3 = j.1 = l i4  = j s  = 3i5 = j 3  = 2. 
(b) block 1 il = j z  = l i z  = j ,  = 2i3 = j ,  = l i d  = j5 = 3is = j ,  = 2. 

, (c) block 1 il = j, = liz = j l  = 2i3 = j z  = l i 4  = j 5  = 3i5 = j 3  = 2. 
(d) block 1 il = j ,  = l i d  = j s  = 3i5 = jl = 2; block 2 i2 = j 3  = 2i3 = j z  = 1. 
Since the graphs (b) and (c) have one block with repetition of indices, only the graphs 

(a) and (d) must be considered. Graph (a) is 

1 2  1 3 2 . . . . 
. 0 0 0 0 

2 1  2 1 3 

and its parameters are m = 2, bl = 2, bz = 3, ci = 1, rld = 0, r2d = 0. rd = 0, v = 3, 
which for the case of S, = $ (that is, 

5Ei::ti so that graph (d) can be 
represented by 

- S = 2) give a value of -1 for formula (15). 
Due to the fermion operator properties ' E x ; :  

1 3  2 2 1 
0 0 . . . 
0 . . * 
2 1  3 1 2 

which has the same parameters and the same value from formula (15) as graph (a). Hence, 
for the operator 5Elti:: the value of trace (10) for S, = is -2 .  
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